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SUMMARY 

A discretization method is presented for the full, steady, compressible Navier-Stokes equations. The method 
makes use of quadrilateral finite volumes and consists of an upwind discretization of the convective part and 
a central discretization of the diffusive part. In the present paper the emphasis lies on the discretization of the 
convective part. The solution method applied solves the steady equations directly by means of a nonlinear 
relaxation method accelerated by multigrid. The solution method requires the discretization to be cont- 
inuously differentiable. For two upwind schemes which satisfy this requirement (Osher’s and van Leer’s 
scheme), results of a quantitative error analysis are presented. Osher’s scheme appears to be increasingly 
more accurate than van Leer’s scheme with increasing Reynolds number. A suitable higher-order accurate 
discretization of the convection terms is derived. O n  the basis of this higher-order scheme, to  preserve 
monotonicity, a new limiter is constructed. Numerical results are presented for a subsonic flat plate flow and 
a supersonic flat plate flow with oblique shock wave-boundary layer interaction. The results obtained agree 
with the predictions made. Useful properties of the discretization method are that it allows an easy check of 
false diffusion and that it needs no tuning of parameters. 
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1. INTRODUCTION 

1 .1 .  Navier-Stokes equations 

The equations considered are the full, steady, 2D, compressible Navier-Stokes equations 

(1) 

with f(q) and g(q) the convective flux vectors, Re the Reynolds number, and r(q) and s(q) the 
diffusive flux vectors. As state vector we choose q=(p,  pu, pu, pe)T, with the total energy e 
satisfying, (assuming a perfect gas) e = p/(p(y - 1)) +$(u2 + v’). The primitive variables used are 
the density p, the pressure p and the velocity components u and u in the x- and y-direction 
respectively. The ratio of specific heats y is assumed to be constant. The convective flux vectors are 
defined by 

f(q) = (2) 

Pu(e + P / P )  Pu(e + P/P)  
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and the diffusive flux vectors by 

with Pr the Prandtl number, c = J ( y p / p )  the speed of sound, and z,,, zXy and tyy the viscous 
stresses. Assuming the diffusion coefficients to be constant and the Stokes hypothesis to hold, the 
viscous stresses are given by 

4 au 2 aU 
3 ax 3 ay’ Txx=- - 

au au 
Tx. = - + ~, ay ax 

4 au 2 au 
yy 3 ay 3 ax 5 

In this paper we present a discretization method which allows an accurate (and efficient) 
computation of (steady) high-Reynolds-number flows up to and including the Euler flow regime. 
The challenge in developing such a method is to find a discretization of the convective part which 
is accurate not only for typical Euler flows, but also for typical Navier-Stokes flows such as 
boundary layer flows. Finding a discretization of the diffusive part which satisfies the same 
requirements is thought to be easy. 

1.2. Discretization method 

To still allow Euler flow solutions with discontinuities, equations (1) are discretized in integral 
form. A straightforward and simple discretization of the integral form is obtained by dividing 
the computational domain R into quadrilateral finite volumes Ri, and by requiring the conser- 
vation laws to hold for each finite volume separately: 

,. . , .  

This discretization requires an evaluation of convective and diffusive fluxes at each cell face. 

1.2.1. Evaluation of convective puxes. Based on experience with the Euler equations (see 
Reference 1 for an overview), for the evaluation of the convective fluxes we prefer an upwind 
approach following the Godunov principle.’ So, along each cell face, the convective flux is 
assumed to be constant and to be determined by a uniformly constant left and right state only. To 
the 1D Riemann problem thus obtained an approximate Riemann solver is applied. The choice of 
the left and right state to be used as input for the approximate Riemann solver determines the 
accuracy of the convective discretization. First-order accuracy is obtained simply by taking the 
left and right state equal to that in the corresponding adjacent v o l ~ m e . ~ ? ~  Higher-order accuracy 
is obtained by applying low-degree piecewise polynomial state interpolation (MUSCL approach), 
using two or three adjacent volume states for the left and right state ~ e p a r a t e l y . ~ . ~  For this flux 
evaluation we make use of the rotational invariance of the Navier-Stokes equations in order to 
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reduce the number of these evaluations per cell face from two to one. A more detailed discussion 
of the decretization of the convective part is given in Section 2. 

1.2.2. Evaluation of diflusivepuxes. For the evaluation of the diffusive fluxes it is necessary to 
compute Vu, V v  and Vc2  at each cell face. To compute for instance ( V U ) ~ +  1 j 2 , j ,  where i +  1/2,j 
refers to the cell face separating 52i,j and Ri+ l , j ,  we use the Gauss theorem 

with ani+ l i 2 ,  the boundary and Ai+  l j 2 ,  the area of a shifted quadrilateral finite volume Ri+ 1 / 2 ,  

(Figure l), of which the vertices z = ( x ,  Y ) ~  are defined by 

z i . j k  1 / 2 = $ ( z i  - 1 / 2 , j i  1 / 2  +zi+ 1 / 2 , j *  1 / 2 1  (7) 

and a similar expression for zi + The line integral in (6) is approximated by 
I- 

unds = ui + 1 .  j($+ 1 ,  j +  112 -$+ I ,  j- 112 )+ui + 112, j +  1 / 2  (Zkj+ 1 / 2  -$+ 1 , j +  1 / 2 1  

?Q, + 112.1 

(8) I + ui, j ( z t j -  l / z  -zi, j +  1 / 2  )+ui + 112, j -  1 j2  (d+ 1 ,  j -  112 - z t j -  1 / 2 ) ,  

$ 
with z l= (y ,  - x ) ~  and with for u i + l , 2 , j k l , 2  the central expression 

ui+ 1 / 2 ,  j +  1 / 2  =$(ui. j + u i ,  j +  1 +ui + 1 ,  j +  ui + 1 .  j +  1 ) .  (9) 

Similar expressions are used for the other gradients and other cell faces. For sufficiently smooth 
grids this central diffusive flux computation is second-order accurate. Notice that by using central 
expressions such as (9), the directional dependence coming from the cross-derivative terms is 
neglected. For high-Reynolds-number flows-our interest-no significant gain in solution 
quality is expected from a biased approach as proposed in Reference 7. Because of the fact that the 
present diffusive flux evaluation is rather cheap, use of rotational invariance is hardly advan- 
tageous and therefore not applied. 

1.3. Solution method 

We give only a brief summary. For a detailed description of the solution method we refer to 
Reference 8. 

For the non-linear system of first-order accurate discretized equations, collective symmetric 
point Gauss-Seidel relaxation is used. In this relaxation one or more (exact) Newton steps are 

i 
I I I 

Z i + l . J + H _  _ - -  7 
/ 

Zi , j j+H 
/ , - -+4 -  

-- I - - - _ _ _  

I 

i 
I ! 

i I 

I I 

I 

I 

I Qi +H.j  

I 

I I 

- - - -,- I - - -- --  - - _  I _ - -  
zi. j - H Zi + I , j  - H 

Figure 1. Shifted finite volume Ri+ 1,2,j 
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used for the collective update of the four state vector components in each finite volume. Non- 
linear multigrid is applied as the acceleration technique. The process is started by nested iteration. 
For the first-order accurate operator this is an efficient process. 

For the higher-order accurate operator the same method leads to poor convergence or even 
divergence. As a remedy we use iterative defect correction as an outer iteration for non-linear 
multigrid applied-again-to the first-order discretized equations. 

The application of the Newton method requires the convective and diffusive fluxes to be 
continuously differentiable. (The diffusive fluxes as described in the previous section already fulfil 
this requirement.) 

2. DISCRETIZATION OF CONVECTIVE PART IN MORE DETAIL 

2.1. Approximate Riemann solver 

As approximate Riemann solver for the Euler equations we prefer Osher’s scheme.’ Reasons 
for the preference are (i) its continuous differentiability and (ii) its consistent treatment of 
boundary conditions. The question arises whether it is still a good choice to use Osher’s scheme 
when, besides discontinuities, also typical Navier-Stokes features such as shear, separation and 
heat conduction have to be resolved. We therefore reconsider the choice of an approximate 
Riemann solver for the present application. 

Since continuous differentiability is an absolute requirement for the success of our solution 
method, and since the only known approximate Riemann solvers with this property are Osher’s’ 
and van Leer’s,’’ our choice is confined to these two only. So far, van Leer’s scheme is more 
widespread in the field of Navier-Stokes than Osher’s.’’-13 Probably the main reason for this is 
its greater conceptual and operational simplicity. 

In this paper the requirement of accurate modelling of physical diffusion will determine our 
choice. In Reference 10, van Leer stated already that his flux vector splitter cannot preserve steady 
contact discontinuities. It diffuses contact discontinuities which, as linear wave phenomena, have 
no intrinsic steepening mechanism counteracting this diffusion. Since a discrete shear layer may 
be interpreted as a layer of contact discontinuities, doubt arose about the suitability of van Leer’s 
scheme for Navier-Stokes codes. Recently, this doubt was confirmed in Reference 14, in which a 
qualitative analysis is presented (supplemented with numerical experiments) for various upwind 
schemes. There, for the resolution of boundary layer flows, Osher’s scheme turns out to be better 
than van Leer’s scheme indeed. To shed some light on the difference in quality, here we present a 
quantitative error analysis for both Osher’s and van Leer’s scheme. The analysis is confined to the 
steady, 2D, isentropic Euler equations for a perfect gas with y = 1: 

with 

f(q)= [ :Iv P ( U 2 + C 2 )  ] >  g(q)=[ :;:2+c2)]9 (11) 

where c is constant. (The choice of 2D equations allows us to consider a boundary layer flow in 
the analysis.) For both upwind schemes we derive the system of modified equations, considering 
(i) a first-order accurate, finite volume discretization on a square grid (Figure 2) and (ii) a subsonic 
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Y 

f 

I B X  

Figure 2. Square model volume Ri,j  with neighbours 

flow with u and u positive and p approximately constant. (The discretization is first-order 
accurate for simplicity and to allow a good display of the differences between the two upwind 
schemes.) 

2.1.1. Osher's scheme. To construct the Osher scheme for the flux vector f(q) we consider the 
quasilinear form 

From this we find directly as the eigenvalues of the Jacobian df(q)/dq 

Izl=u-cc, I,=u, A3=u+c, (13) 

and as corresponding eigenvectors 

r l= [  :el7 r2=[ ! I7  r3=[ i]. 
For the Riemann invariants $:, i=2, 3, satisfying 

(14) 

we find directly = v  and by separation of variables +:=pe"". For I):, i=  1, 3, satisfying 



104 B. KOREN 

we find directly $: = p  and $ : = u .  Similarly to $!, for $;, i =  1,2, satisfying 

we find $ i = u  and $;=pe-"". Using then the P-arrangement of subpaths3 for f(q) as given in 
{ l l ) ,  the Osher scheme can be represented schematically as in Figure 3. Writing Osher's flux 
function F(q,, q l )  as 

df-(q)/dq being the split part of df(q)/dq which corresponds with the negative eigenvalue I . ,  , for 
the given P-type arrangement of subpaths and for the subsonic flow considered, we find directly 

F(q,,q1)=f(q113). (17) 

J (pop l  e (uo-u l ) / c  ) 

For ql13 =(p l13 ,  ulI3 ,  ul13)', by straightforward arithmetic we find 

(18) 1 q1/3 = 3 c U O  + u 1  +cln(pO/pl)l . [.. 
With the simple finite volume grid proposed, and with the neglect of density variation in the error 
terms, we find then as the system of modified equations for Osher's scheme 

a 
ax 
- 

- I a(u2) 
2 ax 

a u  
(UZ + 2 -  

ax 
au aU 

- ax  ax 

_ _ _  

uu- + uc- 

+ O ( h Z ) = O .  (19) 1 
2.1.2. Van Leer's scheme. The flux f(q) is split into a forward flux f+(q) and a backward flux 

f -  (9) such that df' (q)/dq has all positive eigenvalues and df- (q)/dq all negative eigenvalues. 
Additional restrictions imposed on the splitting can be found in Reference 10. For the subsonic 

A, = u  - c  

0 % % 1 

Figure 3. Osher path (P-variant) for f=(pu, p ( u 2 + c z ) ,  p ~ u ) ~ ,  c=constant 
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flow considered, van Leer’s splitting yields 

with f-(q)-f(q)-f+(q). Then, with the square model grid and with the -neglect of density 
variation, we find the following system of modified equations for van Leer’s scheme: 

a 
a Y  

+- 1 2 a Y  

- +O(h2)=0 .  (21) 
2 dY 

av 
2c2 - - aY 

2.1.3. Error comparison. To compare the error terms in (19) and (21) we consider an incompre- 
ssible, semi-finite flat plate flow (Figure 4). As flow solution, instead of the analytically intractable 
Blasius solution, we use Lamb’s approximate solution. Lamb’s approximation, which shows a 
better resemblance to the Blasius solution than for instance Pohlhausen’s (Figure 5), reads 

with P and ZI constant. Substituting the solution vector (22) into the O(h)-error vector of both (19) 
and (21), considering the boundary layer edge 

5 
y = 6 (x) = ~ 

J(Re/x) 

at x = 1, and taking componentwise the ratio of absolute values of both error vectors, using Re % 1 
(our interest), we find 

1 
error (Osher) 5 u  

Y 
A 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . - -ex 

Figure 4. Semi-infinite, incompressible flat plate flow 
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0 0.2 0.4 0.6 0.1 

u/ u 
Figure 5. Velocity profiles: exact (Blasius) and approximate (Lamb and Pohlhausen) 

From (24) it appears that van Leer’s scheme deteriorates compared to Osher’s scheme 
for increasing Re. Assuming (24) to be still reliable for small Re, it appears that already for 
Re> [ 5 ( 1 - 2 / 7 ~ ) U / c ] ~ ,  where U / c  < 1 ,  Osher’s scheme is to be preferred over van Leer’s. 

2.1.4. Solid wall boundary condition treatment. To ensure a continuous transition along a solid 
wall boundary from the Navier-Stokes flow regime to the Euler flow regime, for van Leer’s 
scheme it will be necessary to impose on the convective part only the Euler boundary condition. 
For a non-permeable solid wall this means that one should only impose a zero normal velocity 
component on the convective part (in contrast to the diffusive part on which all boundary 
conditions are to be imposed, i.e. zero normal and tangential velocity components and a 
temperature condition). By not imposing the no-slip and temperature boundary conditions on the 
convective part, we avoid that it ‘feels’ the severe contact discontinuity in the realistic case of a 
boundary layer flow on a coarse grid and an outer flow with M not small. Such a contact 
discontinuity will be erroneously spread by van Leer’s scheme and cause the solution to be 
insensitive to Re variation above some finite, rather low value of Re. 

Osher’s scheme can preserve a steady contact discontinuity as long as it is aligned with the grid. 
Application of (commonly used) body-fitted grids guarantees this alignment along solid walls. 
Therefore, with a body-fitted grid, Osher’s scheme does not need this careful solid wall boundary 
condition treatment. 

2.2. Higher-order accuracy 

As mentioned in Section 1.2.1, higher-order accuracy is obtained by applying low-degree 
piecewise polynomial functions through two or three adjacent volume states. The polynomials 
are given by van Leer’s  scheme" 

with KE[ - 1,1]. For K = - 1,0 and 1 ,  we have the one-sided, the Fromm and the centred scheme 
respectively. The aim now is to optimize K .  For this purpose we consider the scalar model 
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equation 

au au au2  a2,> 
-+--& -+- +- =o. 
ax ay ax axay a y 2  

On a square grid a finite volume discretization using the K-scheme for convection and the central 
scheme for diffusion yields as the modified equation 

a4u a 4 u ) ]  + O ( h 3 )  = o. -2(fi+2p+2p a4 u 
12 ax4 a x 3 a y  a x a y 3 + ~  

Assuming the reliability of the underlying Taylor series expansion, from (27) we find as the 
highest-accuracy value of K 

leading to third-order truncation error accuracy. So, even with the second-order accurate 
diffusive discretization, the complete discretization can be made third-order accurate by choosing 
this diffusion-dependent K .  (We notice that with (28), for the evaluation of the higher-order cell 
face fluxes over the complete computational domain, it is convenient to do this volume by volume 
in a checkerboard fashion instead of cell face by cell face.) However, since convection-dominated 
problems (problems with E Q  1) are our interest, we will simply neglect the above diffusion 
dependence of K which leads us again to K=+.  

2.3. Monotonicity 

To preserve monotonicity of the solution we construct a limiter which is consistent with the 
IC =+-scheme. For this we apply the monotonicity theory of Spekreijse,I6 an extension of 
Sweby's theory" which allows more freedom in the limiter construction. 

For the limited, higher-order, left and right state vector components we write 

(294 

(29b) 

(k)- (k) qf /2. j = qif) + t + ( R  i:j) (9 i. j i - 1, j ) ,  

q'(k) ~ + 1 / 2 , j = q ! k ! ~ , j + ~ $ ( I / R i ~ ~ , j ) ( q ! k ! ~ , j - q ! ~ 2 , j ) ,  

with k =  1, 2, 3, 4, with $(R) the limiter and with 

The limited ~=+-scheme can be written in the one-sided 

(30) 

form (29a, b) as 
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General requirements to be fulfilled by C(R) are (( 1) = 1 to preserve higher-order accuracy, and 
<(O)=O and boundedness for large IRI to preserve monotonicity. For the latter we require 
that lim [ ( R ) ( + + $ R ) = l .  To make the limiter now consistent with the K=+-scheme we 

require that C’( l )=O.  (This makes the limiter tangent to the K=+-scheme at R = l  in the 
monotonicity domain.) Imposing these five requirements on the general form 

R + f m  

we find with (32) 

An illustration of this limiter is given in Figure 6. 

3. NUMERICAL RESULTS 

3.1. Flow problems 

To evaluate the discretization method, the following flow problems are considered: (i) a 
subsonic flat plate flow at M=0.5  and with Re ranging from lo2 up to 1 O 1 O 0 ;  (ii) a supersonic flat 
plate flow with oblique shock wave-boundary layer interaction at M = 2, Re  = 2.96 x lo5. The 
latter problem stems from Reference 18. 

For the subsonic flow problem the Blasius solution is used as a reference. Geometry and 
boundary conditions for this flow problem are given in Figure 7. For convection the eastern 
boundary is assumed to be an outflow boundary. For diffusion the northern, southern and 
eastern boundaries are assumed to be far-field boundaries with zero diffusion. The grids applied 
are all composed of square finite volumes. As coarsest grid in all multigrid computations we use 
the 4 x 2 grid given in Figure 7. 

For the supersonic flow problem the experimental results from Reference 18 will serve as a 
reference. Geometry and boundary conditions are given globally in Figure 8. For this problem, in 
all multigrid computations a 5 x 2-grid is applied as the coarsest grid (Figure 8). The grid was 
optimized for convection by introducing a stretching in the flow direction, and in particular by 

Figure 6. Monotonicity domain with limited and non-limited K =$scheme 
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cow: p = 1 
diff: zero 

conv: p = 1 
diff zero 

~ ~ 0 . 5  
conv: v = O  

diff zero 
[ c = 1 * 

I west 

conv: wall a n v :  wall conv: wall 
diff symmetry diff adiabatic wall diff symmetry 

L 
;o 5 0 %  

X 
0 I 

Figure 7. Geometry, boundary conditions and coarsest grid for subsonic flat plate flow (conv: convection, diff: diffusion) 

u=u, v=v  
Conv: { c=C, p = R  

diff: zero diff: zero 

conv: wall conv: wall 
diff: symmetry diff: adiabatic wall 

Figure 8. Geometry, boundary conditions and coarsest grid for supersonic flat plate flow (conv: convection, dim 
diffusion) 

aligning it with the impinging shock wave. A grid adaptation for diffusion was realized by 
introducing a stretching in the cross-flow direction. 

For both flow problems we use y =  1.4 and Pr=O71. 

3.2. Osher versus van Leer 

To show at first the benefit of the careful solid wall boundary condition treatment as proposed 
for van Leer's scheme in Section 2.1.4, we consider the subsonic flat plate flow at Re= 1O1O0. For 
both Osher's and van Leer's scheme we compute the flow on a.64 x 32 grid (h= 1/32, Figure 9) 
using the first-order accurate discretization and imposing on the convective part, successively, (i) 
non-permeability, no slip and no heat transfer, andGcarefully+ii) non-permeability only. As 
numerical results we show the converged velocity profiles obtained at the middle of the plate 
(x=O). For the case with all Navier-Stokes boundary conditions imposed it appears that van 
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x 

Figure 9. 64 x 32 grid for subsonic flat plate flow: ------, boundary layer edge Blasius solution at Re= 100 

-1 

b. v = 0 only. 

Figure 10. Velocity profiles at x=O for subsonic flat plate flow at Re= and h =  1/32 for two solid wall boundary 
condition treatments: 0, Osher; 0, van Leer 

Leer’s scheme severely thickens the thin layer, whereas Osher’s scheme preserves it 
(Figure lO(a)). With the careful approach, both schemes preserve the layer (Figure lqb)). 

Using the careful boundary condition treatment, for both schemes we perform next an 
experiment with h and Re variation, using again the first-order accurate discretization. Numerical 
results obtained-again velocity profiles obtained at x =&are given in Figure 11. The results 
show the superiority of Osher’s scheme, in particular for high mesh Reynolds numbers. The 
deterioration of van Leer’s scheme with respect to Osher’s scheme which occurs in Figure 1 l(b) 
for increasing Re is in qualitative agreement with the theoretical results presented in Section 2.1.3. 

All further numerical results are obtained with Osher’s scheme only. 

3.3. Monotone higher-order accuracy 

To evaluate our monotone higher-order accurate discretization, we consider the supersonic flat 
plate flow. First we evaluate monotonicity, then higher-order accuracy. 

To investigate the monotonicity-preserving properties of our new limiter (34), we compute the 
Euler flow solution on the 80 x 32 grid in Figure 12 using the ic=i-scheme with and without 
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n- 

N- 

o 0.2 0.4 0.6 0 . 8  0 0.2 0.4 0.6 0.8 

a. h-variation at Re=100, h=1/8,1/16,1/32 

( 0 : Osher, 0 : Van Leer) 

0 0 . 2  0 . 4  0.6 0.8 I 

u/u6 

b. Re-variation at h = 1/32, Re = 100,400,1600 

(left: Osher, right: Van Leer) 

Figure 1 1 .  Velocity profiles at x = O  for subsonic flat plate flow: - -  - - - -, Blasius solution 

X 

Figure 12. 80 x 32 grid for supersonic flat plate flow 
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II 

0 
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Figure 13. Inviscid surface pressure distributions for supersonic flat plate flow, 80 x 32 grid: 0, limited ~ = f ;  0 ,  non- 
limited ~ = f  

0 0.5 I 1 .s 
X 

Figure 14. Viscous surface pressure distributions for supersonic flat plate flow, Re=2.96 x lo5, 80 x 32 grid: A ,  first- 
order; 0, limited ~ = f ;  0 ,  measured 

limiter. Numerical results obtained are given in Figure 13. The results clearly show that the 
limiter does what it is supposed to do: it makes the solution monotone. 

To investigate next the accuracy properties of the limited K =+-discretization, we compute the 
Navier-Stokes solution on the same grid using the limited K=+-scheme and the first-order 
scheme. A comparison is made with the experimental results from Reference 18. Comparing the 
higher-order surface pressure distribution and the corresponding first-order distribution 
(Figure 14), a large qualitative difference in the interaction region is clearly visible. The first-order 
pressure distribution hardly has a plateau in the pressure distribution, which indicates that the 
corresponding first-order separation bubble is significantly smaller than the higher-order one. A 
qualitative difference between the higher-order and experimental results (see also Figure 14) 
seems to be the expansion at the end of the pressure plateau. Though we assume it to be unlikely 
that in the experiment the expansion lies just in between two neighbouring pressure taps (because 
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X 

Figure 15. Viscous surface pressure distributions for supersonic flat plate flow, Re=2.96  x lo5, 80 x 32 grid: 0, van 
Albada; 0 ,  measured 

0 0.5 I 1.5 
X 

Figure 16. Viscous surface pressure distributions for supersonic flat plate flow, R e = 2 . 9 6 x  lo5, 160 x 64 grid: A, first- 
order; 0, limited K =+; 0 ,  measured 

of the absence of an expansion in any other such experiment), we are not (yet) convinced that the 
expansion is nothing but a numerical artefact. A separation bubble in a supersonic flow has 
expansion waves emanating above its convex side. As in our higher-order solution, the presence 
of these waves might well be perceptible on the underlying surface. The wiggles in the higher- 
order distribution are assumed to be caused by the fact that the limiter cannot be applied near 
boundaries. To show that they are probably not a deficiency of the new limiter (34), in Figure 15 
we give the converged higher-order surface pressure distribution as obtained with the well 
established van Albada limiter19 

R ~ + R  
W)=- R 2 + 1  ' (35) 

The van Albada distribution appears to be oscillatory as well. 
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To investigate whether the quantitative differences existing between the higher-order and 
measured surface pressure distribution (such as the interaction length) are grid-independent 
errors of which the cause is not clear, we also compute the limited higher-order solution on a grid 
twice as fine: the 160 x 64 grid corresponding to the 80 x 32 grid given in Figure 12. (Uncertain 
error sources in the wind tunnel experiment might be cross-flow influences, non-observed but 
non-negligible turbulence, some slight heat transfer through the wall, and so on. For the 
computation, an error source might for example be the neglect of temperature dependence in the 
diffusion coefficients.) The converged higher-order surface pressure distribution obtained on the 

x 104 x 104 

u/ua u / u s  

a. In full. b. In detad. 

Figure 17. Velocity profiles at x =2.87 x 105/Re for supersonic flat plate flow, Re=2.96 x lo5, 160 x 64 grid: A, first- 
order; 0, limited K =$; 0 ,  measured 

x 103 

* 
2 

0 0.5 I 1 5  2 

X 

Figure 18 Velocity profiles (O), boundary layer edge (a), sonic line (M = 1 )  and separation bubble ($ <O) for supersonic 
flat plate flow; limited K = $ ,  Re= 2.96 x 10’. 160 x 64 grld 
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X 

a. Grid 

X 

b. Viscous surface pressure dlstribution 

( 0 : limited K =  %, 0 : measured) 

X 

c. Inviscid surface pressure distribution 

( 0 : Limited K =  %, 0 : measured) 

Figure 19. Results for supersonic flat plate flow on rectangular 80 x 32 grid 
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160 x 64 grid is given in Figure 16. Comparison with the measured pressure distribution clearly 
shows a better resemblance than in the case of the 80 x 32 grid (Figure 14), which indicates a 
probably rather small influence of the uncertain error sources. The converged first-order 
distribution is also given. Notice again the rather large qualitative difference between the two 
computed distributions, the first-order one still being without a significant pressure plateau 
(though also without wiggles). In Figure 17 we also compare velocity profiles at an x-location 
inside the bubble. The smoothness of the higher-order velocity profile seems to justify the previous 
statement made about the oscillatory surface pressure distribution and the fact that limiters do not 
work near boundaries. The local maximum in both computed velocity profiles (Figure 17(a)) 
probably corresponds to the expansion of the supersonic flow over the convex side of the bubble. 
Further, in Figure 18 we give a more global impression of the higher-order solution. 

3.4. False difSusion 

By presenting for the 80 x 32 grid not only the viscous solution obtained with the limited 
K = +-scheme (Figure 14) but also the corresponding inviscid solution (Figure 13), insight was 
given about the amount of false diffusion present in the viscous solution. The fact that the present 
method can be used for both Navier-Stokes and Euler flows makes this comparison easy. Making 
the comparison is important. For example, when applying for the supersonic flat plate flow a 
commonly used rectangular grid, such as the rectangular equivalent of the grid in Figure 12 
(Figure 19(a)), a viscous surface pressure distribution is obtained which seems to be very close to 
the experimental data (Figure 19(b)). However, the corresponding inviscid distribution 
(Figure 19(c)) indicates that this good resemblance is mainly caused by false numerical diffusion 
in the discretization of the convective terms and hence is deceptive. In the many numerical results 
available in the literature for this specific Hakkinen test case we have only seen that rectangular 
grids (like that in Figure 19(a)) were applied. However, we have not seen any publication in which 
the corresponding inviscid solution is also shown. 

4. CONCLUSIONS 

With increasing Reynolds number, compared with van Leer’s scheme, Osher’s scheme appears to 
lead to an increasingly more accurate resolution of boundary layer flows, in agreement with the 
theoretical results of Section 2.1.3. Already for rather low Reynolds numbers the difference in 
accuracy is such that Osher’s scheme is to be preferred for engineering purposes. An accidental 
circumstance is that Osher’s scheme needs no special care in the application of solid wall 
boundary conditions, whereas van Leer’s scheme does. 

It is important to investigate the reliability of any computed Navier-Stokes solution with 
respect to the numerical errors in the discretization of the convective part. The present method 
allows an easy check of false diffusion: the same algorithm can be used for both viscous (l/Re>O) 
and inviscid (1/Re = 0) flow computations. 

The discretization method lends itself to efficient solution by multigrid methods and is 
parameter-free; it needs no tuning. 
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